# of Highly Preorganised Polyamine Macrocycles 

Carla Bazzicalupi [a], Andrea Bencini [a], Antonio Bianchi* [a], Vieri Fusi [b], Enrique Garcia-España [c], Claudia Giorgi [a], Josè M. Llinares [c], Piero Paoletti*[a] and Barbara Valtancoli* [a]
[a] Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy [b] Institute of Chemical Sciences, University of Urbino, V. Stazione 4, 61029 Urbino, Italy
[c] Department of Inorganic Chemistry, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain Received August 6, 2001

Synthesis and characterisation of the new macrocyclic ligands L1-L4 are reported. The ligands present one or two pentaamine moieties, each containing two piperazine rings, linked by benzene or anthracene spacers. Interaction of $\mathbf{L 1}$ with $\mathrm{H}^{+}, \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Hg}(\mathrm{II})$, and $\mathrm{Pd}(\mathrm{II})$ and of $\mathbf{L 3}$ with $\mathrm{H}^{+}$, and $\mathrm{Cu}(\mathrm{II})$ has been studied by potentiometric titrations in $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ aqueous solution at $298.1 \pm 0.1 \mathrm{~K}$. The thermodynamic data suggest that in the metal complexes only three nitrogen donor atoms bind each metal ion. As a consequence of the low coordination number, these complexes are promising receptors for different molecules.
J. Heterocyclic Chem., 38, 1273 (2001).

Introduction.
In the last few years special attention has been devoted to the design and synthesis of macrocyclic ligands because of the high degree of preorganization they can impose on metal coordination.[1-5] In particular, polyamine macrocycles may constitute an excellent basis for the study of molecular recognition of different kinds of substrates, such as inorganic or organic cations, anionic species, and neutral molecules [6,7]. Macrocyclic molecules containing two binding subunits linked by two spacers have received much attention since these compounds can form stable binuclear metal complexes [3]. From this point of view, much effort has been devoted to the synthesis of macrocyclic receptors containing two aromatic moieties as rigid spacers linking two binding subunits, such as polyamine chains [4,8-15]. Several ditopic macrocycles containing
two equal polyamine moieties have been synthesised using $2+2$ cyclization reactions. Their binuclear metal complexes have been shown to react with various molecules and ions and several assemblies containing two metal centres bridged by anionic species have been reported [16-18].

In previous works we have investigated the coordination properties of macrocyclic polyamines containing piperazine rings $[4,19]$. This unit is rigid and can introduce a certain degree of organisation in the macrocyclic framework. At the same time piperazine contains two nitrogens which can act as donors toward metals.

Aiming to get further insight into the binding properties of macrocycles containing piperazine rings we have synthesised the new ligands L1-L4, which possess one or two pentaamine moieties, each containing two piperazine rings, linked by benzene or anthracene spacers.







Figure 1. Ligand drawings.


Figure 2. ORTEP drawing of the $\left[\mathrm{H}_{6} \mathbf{L} \mathbf{3}\right]^{6+}$ cation.

Scheme 1




L3, L4

The present work is done to attempt to understand the relationship between equilibrium constant for the binding of $\mathrm{H}^{+}$(basicity), $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Hg}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ and the structural features of $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{3}$ (Figure 1) as a preliminary investigation of the reactivity of their dinuclear complexes with neutral or anionic substrates.


Figure 3. Distribution diagram of the complexed species formed in the system $\mathbf{C u} / \mathbf{L} 3\left(0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl} 298 \mathrm{~K},\left[\mathrm{Cu}^{2+}\right]=2 \times 10^{-3},[\mathbf{L}]=\right.$ $1 \times 10^{-3}$ as a function of pH .

## EXPERIMENTAL

Synthesis.

## Materials.

All reagents and solvents were purchased from commercial sources and used as received unless otherwise noted.
Synthesis of the Compounds.
The precursor bis(2-piperazinylethyl)methylamine triperchlorate ( $\mathbf{1} \cdot 3 \mathrm{HClO}_{4}$ ) [19] and 9,10-bis-(chloromethyl)-anthracene [20] were prepared as already described.

## Cyclophanes L1 and L3.

The amine triperchlorate $1 \cdot 3 \mathrm{HClO}_{4}(12.6 \mathrm{~g}, 0.023 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $32 \mathrm{~g}, 0.23 \mathrm{~mol}$ ) were suspended in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ $\left(250 \mathrm{~cm}^{3}\right)$. To this mixture, a solution of $p$-dibromoxylene 2


Figure 4. ORTEP drawing of the $\left\{\left[\mathrm{Cu}_{2} \mathbf{L} \mathbf{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \text { คpimelate }\right\}^{2+}$ cation [36].

Table 1
Crystal Data and Structure Refinement for $\left[\mathrm{H}_{6} \mathbf{L} 3\right]\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

| Empirical formula | $\mathrm{C}_{42} \mathrm{H}_{80} \mathrm{Cl}_{6} \mathrm{~N}_{10} \mathrm{O}_{26}$ |
| :--- | :--- |
| Formula weight | 1353.86 |
| Temperature | 298 K |
| Wavelength | $0.71069 \AA$ |
| Crystal system, space group | monoclinic, $\mathrm{P} 2{ }_{1} / \mathrm{ln}$ |
| Unit cell dimensions | $\mathrm{a}=11.311(6) \AA$ alpha $=90$ deg. |
|  | $\mathrm{b}=21.05(2) \AA$ beta $=112.28(5)$ deg. |
|  | $\mathrm{c}=14.190(10) \AA$ gamma $=90$ deg. |
| Volume | $3126(4) \AA^{3}$ |
| Z, Calculated density | $2,1.438 \mathrm{Mg}^{3} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.361 \mathrm{~mm}^{-1}$ |
| Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$ | $\mathrm{R} 1=0.0849, \mathrm{wR} 2=0.2049$ |
| R indices (all data) | $\mathrm{R} 1=0.1820, \mathrm{wR} 2=0.2374$ |

* $\mathrm{R} 1=\Sigma\left\|\mathrm{Fo}|-|\mathrm{Fc} \| / \Sigma| \mathrm{Fo}| ; \mathrm{wR} 2=\left[\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2} / \Sigma \mathrm{wFo}^{4}\right]^{1 / 2}\right.$
( $6 \mathrm{~g}, 0.023 \mathrm{~mol}$ ) in $\mathrm{CH}_{3} \mathrm{CN}\left(300 \mathrm{~cm}^{3}\right)$ was added dropwise over 6 hours. After the addition was completed, the suspension was refluxed for 48 hours and then filtered. The solution was evaporated under vacuum to yield the crude product, which was chromatographed on neutral alumina (activity II/III) eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH} 100 / 1.5$. The eluted fractions containing L1



Figure 5. Two proposed coordination modes of $\mathrm{Cu}(\mathrm{II})$ in the $[\mathrm{CuL} 1]^{2+}$ complex. The structures drawn consider only the interactions of L1 and do not include additional water molecules or hydroxide ions at the remaining sites of $\mathrm{Cu}(\mathrm{II})$.

Table 2
Interatomic Distances Between Perchlorate or Water Oxygens atoms $(\AA)$ and Ligand Nitrogens

| O32 $\cdots{ }^{\prime} 3^{\prime}$ | $3.48(3)$ |
| :--- | :--- |
| O32 $\cdots$ N2 | $3.49(2)$ |
| O32 $\cdots{ }^{\prime}$ | $3.59(3)$ |
| N1..O1' $(-x+1 / 2, y+1 / 2,-z-1 / 2)$ | $2.78(2)$ |
| N5..O13' $(x+1 / 2,-y-1 / 2, z-1 / 2)$ | $2.86(2)$ |
| N5..O12' $(x+1 / 2,-y-1 / 2, z-1 / 2)$ | $3.20(2)$ |

$\left(R_{f}=0.4\right)$ and $\mathbf{L} 3\left(R_{f}=0.6\right)$ were collected separately and evaporated to dryness to afford pure $\mathbf{L} 1$ and $\mathbf{L} \mathbf{3}$ as colourless oils (L1 $0.8 \mathrm{~g}, 10 \%$; L3 $2.3 \mathrm{~g}, 28 \%$ ).

L1 ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, \mathrm{pH}=3,25{ }^{\circ} \mathrm{C}$ ): $2.76(\mathrm{~s}, 3 \mathrm{H}), 2.86$ $(\mathrm{m}, 12 \mathrm{H}), 3.28(\mathrm{~m}, 12 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 7.62(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, \mathrm{pH}=3,25^{\circ} \mathrm{C}$ ): 41.3, 50.2, 51.6, 52.2, 53.5, 60.1, 131.4, 133.7 ppm . MS(FAB): $358\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{5}$ : C, $70.55 ; \mathrm{H}, 9.87 ; \mathrm{N}, 19.59$. Found: C, 70.6; H, 9.9; N, 19.6 \%.

Table 3
Protonation Constants $(\log K)$ of $\mathbf{L} 1$ and $\mathbf{L} 2$ Determined by means of Potentiometric Measurements in $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ Aqueous Solution, at $298.1 \pm 0.1 \mathrm{~K}$

Reaction
$\log K$

## L1

L3

| $\mathrm{H}+\mathrm{L}=\mathrm{HL}[\mathrm{a}]$ | $9.39(1)[\mathrm{b}]$ | $10.54(2)$ |
| :--- | :---: | :---: |
| $\mathrm{HL}+\mathrm{H}=\mathrm{H}_{2} \mathrm{~L}$ | $7.91(2)$ | $8.49(3)$ |
| $\mathrm{H}_{2} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{3} \mathrm{~L}$ | $6.59(3)$ | $8.20(3)$ |
| $\mathrm{H}_{3} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{4} \mathrm{~L}$ | $2.47(7)$ | $7.37(4)$ |
| $\mathrm{H}_{4} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{5} \mathrm{~L}$ |  | $6.93(3)$ |
| $\mathrm{H}_{5} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{6} \mathrm{~L}$ |  | $6.11(4)$ |
| $\mathrm{H}_{6} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{7} \mathrm{~L}$ |  | $5.98(5)$ |
| $\mathrm{H}_{7} \mathrm{~L}+\mathrm{H}=\mathrm{H}_{8} \mathrm{~L}$ |  | $2.44(5)$ |

[a] Charged omitted for clarity; [b] Values in parentheses are standard deviations on the last significant figure.

Table 4
Stability Constants ( $\log \mathrm{K}$ ) of L1 Determined by means of Potentiometric Measurements in $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ NaCl Aqueous Solution, at $298.1 \pm 0.1 \mathrm{~K}$

| Reaction | Log K |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | $\mathrm{Cu}(\mathrm{II})$ | $\mathrm{Zn}(\mathrm{II})$ | $\mathrm{Hg}(\mathrm{II})$ | $\mathrm{Pd}(\mathrm{II})$ |
| $\mathrm{M}+\mathrm{L}=\mathrm{ML}[\mathrm{a}]$ | $6.76(3)[\mathrm{b}]$ | $4.53(9)$ |  |  |
| $\mathrm{ML}+\mathrm{OH}=\mathrm{ML}(\mathrm{OH})$ | $6.06(4)$ | $5.49(5)$ |  |  |
| $\mathrm{ML}(\mathrm{OH})+\mathrm{OH}=\mathrm{ML}(\mathrm{OH})_{2}$ | $4.36(8)$ | $3.86(8)$ |  |  |
| $\mathrm{M}+\mathrm{L}+\mathrm{Cl}=\mathrm{MLCl}$ |  |  | $21.28(3)$ | $16.33(6)$ |
| $\mathrm{MLCl}+\mathrm{H}=\mathrm{MLCl}$ |  |  | $6.32(3)$ | $8.05(6)$ |
| $\mathrm{MLCl}+\mathrm{OH}=\mathrm{MLCl}(\mathrm{OH})$ |  |  | $7.40(1)$ |  |
| $\mathrm{M}+\mathrm{L}+\mathrm{OH}=\mathrm{ML}(\mathrm{OH})$ |  |  |  | $20.87(5)$ |

[a] Charged omitted for clarity; [b] Values in parentheses are standard deviations on the last significant figure.

L3 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{pH}=3,25{ }^{\circ} \mathrm{C}\right): 2.95(\mathrm{~m}, 30 \mathrm{H}), 3.40$ $(\mathrm{m}, 24 \mathrm{H}), 4.43(\mathrm{~s}, 8 \mathrm{H}), 7.64(\mathrm{~s}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{pH}=\right.$ $\left.3,25^{\circ} \mathrm{C}\right): 42.3,50.4,51.2,52.3,53.0,60.7,131.4,133.3 \mathrm{ppm}$. MS(FAB): $716\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{~N}_{10}: \mathrm{C}, 70.55 ; \mathrm{H}, 9.87 ; \mathrm{N}, 19.59$. Found: C, 70.7; H, 10.1; N, 19.7 \%

## $\mathbf{L} 1 \cdot 3 \mathrm{HClO}_{4}$.

The amine $\mathbf{L} \mathbf{1}$ was dissolved in ethanol and treated with 65\% perchloric acid to give the triperchlorate salt as a white solid in almost quantitative yield.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{Cl}_{3}$ : C, 38.28; $\mathrm{H}, 5.81 ; \mathrm{N}, 10.63$. Found: C, 38.3 ; H, 5.8; N, 10.6\%.

CAUTION: Perchlorate salts of metal complexes with organic ligands are potentially explosive; these compounds must be handled with great caution.

Table 5
Stability Constants $(\log K)$ of the $\mathbf{L} \mathbf{3}$ complexes with Cu (II) Determined by means of Potentiometric Measurements in $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ Aqueous Solution, at $298.1 \pm 0.1 \mathrm{~K}$

| Reaction | Log K |
| :--- | :--- |
| $\mathrm{Cu}+\mathrm{L}=\mathrm{CuL}[\mathrm{a}]$ | $9.3(1)[\mathrm{b}]$ |
| $\mathrm{CuL}+\mathrm{H}=\mathrm{CuHL}$ | $9.76(4)$ |
| $\mathrm{CuHL}+\mathrm{H}=\mathrm{CuH}_{2} \mathrm{~L}$ | $7.91(6)$ |
| $\mathrm{CuH})_{2} \mathrm{~L}+\mathrm{H}=\mathrm{CuH}_{3} \mathrm{~L}$ | $7.25(7)$ |
| $\mathrm{CuH}_{3} \mathrm{~L}+\mathrm{H}=\mathrm{CuH}_{4} \mathrm{~L}$ | $6.62(4)$ |
| $\mathrm{CuH}_{4} \mathrm{~L}+\mathrm{H}=\mathrm{CuH}_{5} \mathrm{~L}$ | $5.97(4)$ |
| $2 \mathrm{Cu}+\mathrm{L}=\mathrm{Cu}_{2} \mathrm{~L}$ | $8.1(1)$ |
| $\mathrm{Cu}_{2} \mathrm{~L}+\mathrm{H}=\mathrm{Cu}_{2} \mathrm{HL}^{2}$ | $8.58(4)$ |
| $\mathrm{Cu}_{2} \mathrm{HL}+\mathrm{H}=\mathrm{Cu}_{2} \mathrm{H}_{2} \mathrm{~L}$ | $7.02(4)$ |
| $\mathrm{Cu}_{2} \mathrm{~L}+\mathrm{OH}=\mathrm{Cu}_{2} \mathrm{~L}(\mathrm{OH})$ | $5.29(5)$ |
| $\mathrm{Cu}_{2} \mathrm{~L}(\mathrm{OH})+\mathrm{OH}=\mathrm{Cu}_{2} \mathrm{~L}(\mathrm{OH})_{2}$ | $4.42(5)$ |

[a] Charged omitted for clarity; [b] Values in parentheses are standard deviations on the last significant figure.

## $\mathbf{L} 3 \cdot 7 \mathrm{HClO}_{4}$.

The heptaperchlorate salt $\mathbf{L} \mathbf{3} \cdot 7 \mathrm{HClO}_{4}$ was obtained in an almost quantitative yield by treating the amine $\mathbf{L} \mathbf{3}$ with $65 \%$ perchloric acid in ethanol.

Anal. Calc. for $\mathrm{C}_{42} \mathrm{H}_{77} \mathrm{~N}_{10} \mathrm{O}_{28} \mathrm{Cl}_{7}$ : C, $35.57 ; \mathrm{H}, 5.47 ; \mathrm{N}, 9.88$. Found: C, $35.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 10.0 \%$.

## Cyclophanes L2 and L4.

The amine tripercholarate $\left(1 \cdot 3 \mathrm{HClO}_{4}\right)(21.0 \mathrm{~g}, 0.038 \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(52.5 \mathrm{~g}, 0.38 \mathrm{~mol})$ were suspended in $\mathrm{CH}_{3} \mathrm{CN}\left(500 \mathrm{~cm}^{3}\right)$ at room temperature. To this mixture, a solution of 9,10 -bis-(chloromethyl)-anthracene $3(10.5 \mathrm{~g}, 0.038 \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ ( $500 \mathrm{~cm}^{3}$ ) was added dropwise over $6-7$ hours. The resulting yellow solid was filtered and dissolved in the minimum amount of chloroform and chromotographed on alumina (activity II/III) eluting with chloroform. The eluted fractions containing $\mathbf{L} 2\left(\mathrm{R}_{\mathrm{f}}=\right.$ $0.3)$ and $\mathbf{L 4}\left(\mathrm{R}_{\mathrm{f}}=0.6\right)$ were collected separately and evaporated to dryness to afford pure $\mathbf{L} 2$ and $\mathbf{L 4}$ as white solids. ( $\mathbf{L} 22.6 \mathrm{~g}$, 15 \%; L4 $7.5 \mathrm{~g}, 43 \%)$.

L2 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 16 \mathrm{H}), 2.63$ $(\mathrm{m}, 8 \mathrm{H}), 4.36(\mathrm{~s}, 4 \mathrm{H}), 7.40(\mathrm{dd}, 4 \mathrm{H}), 8.23(\mathrm{dd}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): 42.1,52.4,53.6,53.7,54.6,55.8,124.6$, 125.9, 129.7, 131.3 ppm . MS(FAB): $458\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{5}$ : C, 76.11; H, 8.59; N, 15.30. Found: C, 76.2; H, 8.6; N, 15.3 \%.

L4 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~m}, 32 \mathrm{H}), 2.57$ $(\mathrm{m}, 16 \mathrm{H}), 4.41(\mathrm{~s}, 8 \mathrm{H}), 7.43(\mathrm{dd}, 8 \mathrm{H}), 8.46(\mathrm{dd}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): 43.3,52.8,53.6,53.9,54.3,56.0,124.9$, 125.6, 130.1, 130.9 ppm . MS(FAB): $916\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Anal. Calc. for $\mathrm{C}_{58} \mathrm{H}_{78} \mathrm{~N}_{10}$ : C, 76.11; H, 8.59; N, 15.30. Found: C, $76.1 ; \mathrm{H}, 8.6 ; \mathrm{N}, 15.3 \%$.

X-ray Structures Analysis.
A colourless prismatic crystal of $\left[\mathrm{H}_{6} \mathbf{L 3}\right]\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was mounted on an Enraf-Nonius CAD4 X-ray diffractometer. Graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation was used for cell parameter determination and data collection. A summary of crystallographic data is reported in Table 1.

Cell parameters were determined by least-squares refinement of diffractometer setting angles of 25 carefully centered reflections. The crystals of the compound belong to the monoclinic family, space group $\mathrm{P} 2_{1} / \mathrm{n}(\mathrm{Z}=2)$.

Intensities of two standard reflections were monitored during data collection to check the stability of the diffractometer and of the crystal: no loss of intensity was recognised. A total of 1804 reflections, to a limit of $2 \theta=40^{\circ}$, were collected. Intensity data were corrected for Lorentz, polarisation and absorption (PSI-SCAN) effects.

The structure was solved by the direct methods of the SIR97 program [21]. Refinement was performed by means of the full-matrix least-squares method using the SHELXL97 program[22] which uses the analytical approximation for the atomic scattering factors and anomalous dispersion corrections from [23]. The function minimised was $\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$, with $\mathrm{w}-=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right]$, where a and b are refined parameters and $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$.

Anisotropic displacement parameters were used for oxygen and chlorine atoms, while isotropic thermal factors were used with carbon and nitrogen atoms. The hydrogen atoms were introduced in calculated position, and were allowed to ride on their neighbouring heavy atoms.

For 227 refined parameters, the final agreement factors were $\mathrm{R} 1=0.0849$ (for 815 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ) and $\mathrm{wR} 2=$ 0.2374 (all data).

Crystal data, atomic coordinated and displacement parameters, full listing of bond distances and angles, have been deposed at the Cambridge Crystallografic Data Centre.

## Emf Measurements.

All the pH metric measurements $\left(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\right)$were carried out in degassed $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ solutions, at 298.1 K , by using equipment and procedure which have already been described [24]. The combinated Ingold 405 S7/120 electrode was calibrated as a hydrogen concentration probe by titrating known amounts of HCl with $\mathrm{CO}_{2}$-free NaOH solutions. The equivalent point was determined the by the Gran's method [25], which allows one to determine the standard potential $\mathrm{E}^{\mathrm{o}}$, and the ionic product of water $\left(\mathrm{pK}_{\mathrm{w}}=13.73(1)\right.$ at 298.1 K in $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaCl})$. In the measurements for the determination of the stability constants, the metal to ligand molar ratio was varied from 0.5 to 2 to verify the formation of polynuclear complexes. At least four measurements (about 150 data points for each one) were performed for each system in the pH range 2.5-10.5 and the relevant e.m.f. data were treated by means of the computer program HYPERQUAD [26] which furnished the equilibrium constants reported in Tables 3-5. Due to the high stability of the $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ complexes of polyammines $\mathbf{L 1}, \mathbf{L 3}$, competition between protonation of the free ligands and complex formation is not significant enough to derive the values of the stability constants, and competition with the formation of Hg (II) and $\mathrm{Pd}($ II $)$ chloro complexes was used. The stability constants for the formation of $\mathrm{Hg}(\mathrm{II})$ and Pd (II) chloro complexes were taken from references [27] and [28], respectively.

## Results and Discussion.

Synthesis.
Piperazine, anthracene and benzene groups are good building blocks to form large receptors [4,19,20,29]. The insertion of such moieties in macrocyclic frameworks increases the rigidity and preorganization of the macrocycles, enhancing their selectivity in substrate binding. To this purpose we have synthesised the four new ligands L1-L4 which simultaneously contain piperazine units and anthracene or $p$-phenylene moieties.
The procedure developed for the synthesis utilizes the simple starting material 1, which can be obtained by tosylation of diethanolamine in high yields. [19] Reaction of $\mathbf{1}$ with $p$-dibromoxylene $\mathbf{2}$ or 9,10-bis-(chloromethyl)-anthracene $\mathbf{3}$ in 1:1 molar ratio was carried out in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of $\mathrm{M}_{2} \mathrm{CO}_{3}$ ( $\mathrm{M}=$ $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Cs}$ ) and gave, after separation by column chromatography, the cyclophanes $\mathbf{L 1}$ and $\mathbf{L 3}$ or $\mathbf{L 2}$ and $\mathbf{L 4}$, respectively. The macrocycles were characterised by standard techniques. ESI mass spectrometry combined with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR measurements allow for the unequivocal assignment of compounds to the structures in Scheme 1. The yields of the reactions for L1-L4 do not vary significantly with the use of different alkaline carbonates suggesting the absence of any template effect in the cyclizations.
It is of interest that the yields for the $2+2$ cyclizations are remarkably larger than those of the $1+1$ cyclizations. Alcock et al reported [30] the synthesis of two octaaza-macrocycles obtain by using 1,4-bis( 3 '-aminopropyl)piperazine in the cyclization reaction. The preferred chair conformation of the 1,4 piperazine
ring and the consequent trans orientation of the two side arms bearing the $\mathrm{NH}_{2}$ reactive functions was involved to explain the observed "two plus two" cyclization. In our case, the conformation of the piperazine rings does not seems to be responsible of the preferential $2+2$ pathways. The preferred $2+2$ cyclization are probably related to the presence of rigid spacers in both precursors (the piperazine unit in $\mathbf{1}$ and the $p$-phenylene and anthracene units in $\mathbf{2}$ and $\mathbf{3}$ ). The absence of any cation-template effect contributes to support this hypothesis. Indeed, the same type of cyclization reaction, when carried out with linear, not reinforced, polyamine fragments yields only macrocycles by $1+1$ cyclization reactions. [31]

In conclusion the reinforcement of one synthetic fragment, which represents a relatively small structural variation, has a profound influence on the reaction products.

## Structure Analysis of $\left[\mathrm{H}_{6} \mathbf{L 3}\right]\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

The molecular structure consists of hexaprotonated $\left[\mathrm{H}_{6} \mathbf{L 3}\right]^{6+}$ cations, lying around a crystallographic inversion centre with six disordered perchlorate anions and two water molecules. Figure 2 shows an ORTEP [32] drawing of the cation and two symmetry related perchlorate anions interacting with the polyammonium groups of the macrocycle. The overall conformation of the macrocycle is S -shaped, with parallel phenyl rings. Both piperazine rings are in chair conformation.

Six out of the ten nitrogen atoms (N2, N3, N4 and the centrosymmetric ones) are in the endo conformation, while N1, N1', N5 and N5' adopt an exo conformation, due to the chair conformation of the piperazine units. Although we were not able to localise the six protonation sites in the structure refinement, the analysis of the ligand conformation and of the $\mathrm{N}^{\cdots} \mathrm{O}$ interatomic distances suggests that four protons are bonded to the N1, N1', N5 and N5' nitrogens. In fact, Table 2 clearly shows that the interatomic distances between N1 and N5 and the oxygen atoms of perchlorate anions or water molecules are significantly shorter than those between N2, N3 and N4 and the oxygen atoms of the perchlorate anions.
Assigning position of the remaining two protons cannot be confidently made. Weaker interaction, however, are also found between the $\mathrm{N} 2, \mathrm{~N} 3$ and N 4 nitrogens and the O32 perchlorate anion, which are probably electrostatic in nature.

## Solution Chemistry.

The coordination properties of $\mathbf{L 1}$ and $\mathbf{L 3}$ toward $\mathrm{H}^{+}, \mathrm{Cu}(\mathrm{II})$, Zn (II), Hg (II) and Pd (II) were studied in $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$ aqueous solutions at 298.1 K by means of potentiometric measurements. Low solubility of the ligands L 2 and L 4 did not allow us to perform similar study with them.

The protonation constants for $\mathbf{L} 1$ and $\mathbf{L 3}$ are reported in Table 3. The values obtained are in agreement with the general behaviour observed for polyamine macrocycles [33].

## Metal Complexes.

$\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ Coordination.
The stability constants for $\mathbf{L 1}$ and $\mathbf{L} \mathbf{3}$ towards Cu (II) and Zn (II) are reported in Tables 4 and 5, respectively. As expected, L3 forms both mono- and dinuclear $\mathrm{Cu}(\mathrm{II})$ complexes in aqueous solution. The mononuclear $[\mathrm{CuL3} 3]^{2+}$ complex exhibits a marked tendency to protonation forming all the protonated species from $[\mathrm{CuHL} 3]^{3+}$ to $\left[\mathrm{CuH}_{5} \mathbf{L} 3\right]^{7+}$. The stepwise addition constants
$(\log \mathrm{K})$ of the protons to the $[\mathrm{CuL} 3]^{2+}$ species have high values indicating that the protonations occur on amine functions not involved in metal ion coordination.
It is to be noted that the stability constant $(\log K=9.3)$ for the $[\mathrm{CuL3}]^{2+}$ complex is lower than those previously found for triaza ligands (for instance, $\log \mathrm{K}=12.16$ for $\mathrm{Cu}($ II $)$ complex of $2,5,8-$ trimethyl-2,5,8-triazanonane) where the metal is coordinated by three tertiary nitrogens connected by ethylenic chains, [34] and much lower than that found for 1,4,7,10-tetrazabicyclobicyclo[8.2.2]tetradecane ( $\log \mathrm{K}=21.5$ ), where two nitrogens of the piperazine unit are bound to the metal [35]. It is seems likely than in the $[\mathrm{CuL3}]^{2+}$ complex the metal is coordinated by the methylated nitrogen N1 and by one adjacent nitrogen of each piperazine ring ( N 2 and N 2 ' in Figure 1). This feature can be explained by considering that in the ligand both piperazine rings are in the chair conformation, as shown by the crystal structure of its hexaperchlorate salt. Coordination of the second piperazine nitrogen ( N 3 and $\mathrm{N} 3^{\prime}$ ) would involve the interconversion of the piperazine rings from the chair to the boat conformation, which is an expensive process from an energetic point of view. Indeed the two conforms are about $29 \mathrm{~kJ} \mathrm{~mol}^{-1}$ apart in energy [4], which means about five logarithmic units in the value of the stability constant, and thus reorganisation of the piperazine ring strongly reduced the thermodynamic ability of $\mathbf{L 3}$ to bind the metal ion. The equilibrium constant for the binding of the second $\mathrm{Cu}(\mathrm{II})$ ion by $[\mathrm{CuL} 3]^{2+}$ to give binuclear complex $\left[\mathrm{Cu}_{2} \mathbf{L} 3\right]^{4+}(\log \mathrm{K}=8.1)$ is similar to that determined for the formation of $[\mathrm{CuL} 3]^{2+}$. This behaviour is clearly depicted by the distribution diagram of the species formed as a function of pH reported in Figure 3. For 2:1 $\mathrm{Cu}(\mathrm{II}): \mathbf{L 3}$ molar ratios, the formation of the monometallic complex is depressed and only protonated $\left[\mathrm{Cu}\left(\mathrm{H}_{\mathrm{x}} \mathbf{L} \mathbf{3}\right)\right]^{(2+x)+}(\mathrm{x}=$ 4,5 ) complexes are formed in low percentages at acidic pH 's, while the binuclear species are largely prevalent in solution in a wide pH range. All these observations agree with the involvement of the two identical ligand moieties in the coordination of each $\mathrm{Cu}(\mathrm{II})$ ion in the binuclear complex, as actually shown by the crystal structure of the $\left\{\left[\mathrm{Cu}_{2} \mathbf{L} \mathbf{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \supset \text { pimelate }\right\}^{2+}$ (see below). Finally in the $\left[\mathrm{Cu}_{2} \mathbf{L} 3\right]^{4+}$ species both metal ions are coordinated by only three nitrogens completing their coordination requirement with water molecules, which undergo to facile deprotonation at alkaline pH values giving mono- and dihydroxylated species. The equilibrium constants for the addition of the first and the second $\mathrm{OH}^{-}$anions to $\left[\mathrm{Cu}_{2} \mathbf{L} \mathbf{L}\right]^{4+}$ are similar (see Table 5) suggesting that the hydroxide anions in $\left[\mathrm{Cu}_{2} \mathbf{L 3}(\mathrm{OH})_{2}\right]^{2+}$ are located on two separate metal centres.
These experimental data suggest that in the $\left[\mathrm{Cu}_{2} \mathbf{L} \mathbf{3}\right]^{4+}$ complex only three nitrogen donor atoms bind each $\mathrm{Cu}(\mathrm{II})$. As a consequence of the low coordination number, these complexes behave as receptors for molecules of anionic species, forming "cascade complexes". Crystallisation of methanol/butanol solutions containing $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}, \mathbf{L 3}$, and sodium pimelate in 2:2:1 molar ratio allows to isolate crystals of the complex $\left\{\left[\mathrm{Cu}_{2} \mathbf{L} 3-\right.\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \supset$ pimelate $\}\left(\mathrm{ClO}_{4}\right)_{2}$. [36] The crystal structure of this complex (Figure 4), previously reported [36], confirms that the ligand involves only three out of five nitrogen atoms of each moiety in the binding of metal ions inducing the formation of cascade complex with the difunctional pimelate anion.

Ligand L1 displays a more rigid and stiffened structure than L3, due to the simultaneous presence of two piperazine rings and an aromatic unit within its small cyclic framework. With the purpose of analysing the effect of such molecular rigidity on the
binding features of $\mathbf{L} \mathbf{1}$, we decided to carry out a potentiometric study in aqueous solutions on the interaction of this macrocycle with $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Hg}$ (II) and $\mathrm{Pd}(\mathrm{II})$ and the results are reported in Table 4. The most interesting finding is the markedly lower stability of the $\mathrm{Cu}(\mathrm{II})$ complex of $\mathbf{L 1}$ compared to the mononuclear $\mathrm{Cu}(\mathrm{II})$ complex with L3. A preliminary molecular mechanics calculation shows that in the absence of metal ion, L1 contains the two piperazine rings in the chair conformation. Most likely, binding of $\mathrm{Cu}(\mathrm{II})$ leads to an interconversion of one or both piperazine rings from the chair to the boat conformation (Figure 5), as already observed in the $\mathrm{Cu}(\mathrm{II})$ complexes with reinforced tetraazamacrocycles [35]. This structural feature can explain the lower stability constant of the $[\mathrm{CuL} 1]^{2+}$ complex compared with the mononuclear L3. The facile deprotonation of the coordinated water molecules to give hydroxo complexes at neutral or slightly alkaline pH values confirm the low number of nitrogen donors involved in metal coordination.

The coordination properties of $\mathbf{L} \mathbf{1}$ toward $\mathrm{Zn}(\mathrm{II})$ are similar to those found for $\mathrm{Cu}(\mathrm{II})$, the most significant difference being the lower stability of the $[\mathrm{ZnL} 1]^{2+}$ complex which is usually observed in Zn (II) complexes with polyamines.

## $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ Coordination.

In Table 4 are shown the stability constants for the formation of $\mathrm{Hg}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ complexes with $\mathbf{L} 1$ determined by potentiometry at $298.1 \pm 0.1 \mathrm{~K}$ in $0.15 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}$. The high stability of these complexes made necessary the use of competing procedures to determine the relevant equilibrium constants since hydrogen ions do not compete significantly with the metal ions in the pH range 2.5-10.5. Competition of $\mathbf{L} \mathbf{1}$ with chloride ions for the coordination of Hg (II) and Pd (II) was used.

As far as the stability constant of $[\mathrm{Pd} \mathbf{L} 1 \mathrm{Cl}]^{+}$complex is concerned some general features can been outlined. First of all it is to be noted that the stability of this species is markedly lower than those reported for tertiary triamine ligands (for instance log $\mathrm{K}=24.9$ for the $\mathrm{Pd}(\mathrm{II})$ complex with $2,5,8$-trimethyl-2,5,8triazanonane [37]). Furthermore the equilibrium constant for the addition of $\mathrm{H}^{+}$to the $[\mathrm{PdL} \mathbf{C l}]^{+}$complex is significantly high, revealing that protonation occurs on a nitrogen atom not involved in the metal coordination. This observation indicates that the metal ion is probably coordinated by the methylated nitrogen and by one nitrogen of each adjacent piperazine ring and one chloride anion with typical square geometry. This is confirmed by the electronic spectrum of the complex which displays a band at 350 nm typical of a square planar $\mathrm{N}_{3} \mathrm{PdCl}$ chromophore [37]. This binding mode would involve, once again, interconversion of one or two piperazine rings from the chair conformation to the less energetically favoured boat conformation, thus explaining the observed low stability constant of the $[\mathrm{PdL1Cl}]^{+}$complex.

Similar consideration can be made for the Hg (II) complexes. The stability constant value accounts for a Hg (II) ion coordinated by only three nitrogens in the [ $\mathrm{HgL1Cl}]^{+}$complex [38]. The most interesting finding is the big gap in the stability between the complexes of $\mathrm{Hg}(\mathrm{II})$ and those of $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ which would allow the selective recognition of this ion.
Acknowledgements.
Financial support by the Italian Ministero dell'Università e della Ricerca Scientifica e Tecnologica, within the program COFIN 2000, and by Italian Research Council (CNR) is gratefully acknowledged and by Spanish DGCYT BQU2000-1424.

## REFERENCES AND NOTES

[*] Author E-mail: barbara@chim1.unifi.it.
[1a] Q. Lu, J. J Reibenspies, A. E Martell and R. J Motekaitis,. Inorg. Chem., 35, 2630 (1996); [b] D. A Nation, A. E Martell, R. I Carroll and A. Clearfield Inorg. Chem. 35, 7246 (1996) and references cited therein.
[2a] M. G. B Drew, C. J Harding, O. W Howarth, Q. Lu, D. J. Marrs, G. Morgan, V. McKee and J. Nelson, J. Chem. Soc., Dalton Trans, 3021 (1996); [b] C. J. Harding, F. E. Mabbs, E. J. L. MacInnes, V. McKee and J Nelson, J. Chem. Soc., Dalton Trans., 3227 (1996).
[3a] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, G. Piccardi, P. Paoletti and B. Valtancoli, Inorg. Chem., 34, , 5622 (1995); [b] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti, B. Valtancoli and D. Zanchi, Inorg. Chem., 36, 2784 (1997), and references cited therein.
[4] J. A Aguilar, E. Garcia-España, J. A. Guerrero, J. M. Llinares, J. A. Ramirez, C. Soriano, S. V. Luis, A. Bianchi, L. Ferrini and V. Fusi, J. Chem. Soc., Dalton Trans., 239 (1996).
[5] T. Koike, M. Inoue, E. Kimura and M. Shiro, J. Am. Chem. Soc., 118, 3091 (1996).
[6a] J. S. Bradshaw, Aza-crown Macrocycles, Wiley, New York (1993); [b] R. M. Izatt, J. S. Bradshaw, S. A.; Nielsen, J. D. Lamb, J. J. Christensen and D. Sen, Chem. Rev. 85, 271 (1985); [c] K. E. Krakowiak, J. S. Bradshaw, D. J Zamecka-Krakowiak,. Chem. Rev. 89, 929 (1989); [d] J. S. Bradshaw, K. E. Krakowiak and R. M. Izatt, Tetrahedron, 48, 4475 (1992); [e] J. M Lehn, Angew. Chem., Int. Ed. Eng., 27, 89 (1988); [f] P. Guerriero, S. Tamburini and P. A. Vigato, Coord. Chem. Rev., 110, 17 (1995).
[7a] R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 91, 1721 (1991); [b] R. M. Izatt, J. S. Bradshaw, K. Pawlak, R. L. Bruening and Tarbet, Chem. Rev. 92, 1261 (1992); [c] R. M. Izatt, K. Pawlak and J. S. Bradshaw Chem. Rev. 95, 2529 (1995).
[8] F. Diederich, Cyclophanes, Monographs in Supramolecular Chemistry, Stoddart J. F. Ed.; The Royal Society of Chemistry, Cambridge, (1992).
[9a] B. Dietrich, T. M. Fyles, J. M. Lehn, L. G. Pease and D. L. Fyles, J. Chem. Soc., Chem. Comm., 934 (1978); [b] J. Jazwinski, J. M. Lehn, M. Meric, J-P. Vigneron, M. Cesario, J. Guilhem and C. Pascard, Tetrahedron Lett., 42, 3489 (1987).
[10a] F. Vögtle and W. M. Muller, Angew. Chem., Int. Ed. Eng., 23, 712 (1984); [b] F. Vögtle, W. M. Muller, V. Werner and H. W. Losensky, Angew. Chem., Int. Ed. Eng., 26, 901 (1987).
[11] Y. Murakami, J. KiKuchi, T. Ohno, T. Hirayama, Y. Hisaeda, Y. Nishimura, J. P. Snyder and K. Steliou, J. Am. Chem. Soc., 113, 8229 (1991).
[12a] A. Kumar, S. Mageswaran and I. O. Sutherland, Tetrahedron, 42, 3291 (1986); [b] A. Pratt, E. I. O. Sutherland and R. F. Newton, J. Chem. Soc., Perkin Trans. I, 13 (1988); [c] I. O. Sutherland, Chem Soc. Rev., 15, 63 (1986); [d] I. O. Sutherland, Pure \& Appl. Chem., 61, 1547 (1989).
[13] M. Pietraszkiewicz and R. Gasiorowki, Chem. Ber., 123, 405 (1990).
[14a] R. J. Motekaitis, A. E. Martell, J. P. Lecomte and J. M. Lehn, Inorg. Chem. 22, 609 (1983); [b] D. Chen and A. E. Martell, Tetrahedron, 34 6895 (1991); [c] R. Menif, A. E. Martell, P. J. Squattrito and A. Clearfield, Inorg. Chem., 29, 4723 (1990); [d] D. A. Rockcliffe, A. E. Martell and J. H. Reibenspies, J. Chem. Soc., Dalton Trans., 167 (1996).
[15a] D. McDowell and J. Nelson, Tetrahedron Lett., 385 (1988); [b] J. Hunter, J. Nelson, M. McCaan, and V. McKee J. Chem. Soc., Chem. Commun., 1148 (1990); [c] Q. Lu, J. M. Latour, C. J. Harding, N. Martin, D. J. Marrs, V. McKee and J. Nelson, J. Chem. Soc., Dalton Trans., 1471 (1994); [d] C. J. Harding, Q. Lu, J. F. Malone, D. J. Marrs, N. Martin, V. McKee and J. Nelson, J. Chem. Soc., Dalton Trans., 1739 (1995).
[16a] D. J. Marrs, J. Hunter, C. Harding, M. G. B. Drew and J. Nelson, J. Chem. Soc., Dalton Trans., 3235 (1992); [b] Q. Lu, C. Harding, V. McKee and J. Nelson, Inorg. Chim. Acta, 255, 195 (1993);
[c] Q. Lu, M. McCann and J. Nelson, J. Inorg. Biochem, 51, 633 (1993); [d] Q. Lu, V. McKee and J. Nelson, J. Chem. Soc., Chem. Comm., 649 (1994); [e] G. Morgan, V. McKee and J. Nelson, Inorg. Chem., 33, 4427 (1994); [f] D. J. Marrs, J. Hunter, C. Harding, M. G. B. Drew and J. Nelson, J. Chem. Soc., Dalton Trans., 3235 (1992).
[17a] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, P. Paoletti and B. Valtancoli, J. Chem. Soc., Chem. Commun., 881 (1994); [b] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, M. Mazzanti, P. Paoletti and B. Valtancoli, B. Inorg. Chem., 34, 3003 (1995).
[18a] D. McDowell and J. Nelson, Tetrahedron Lett., 385 (1988); [b] J. Hunter, J. Nelson, M. McCaan, and V. McKee J. Chem. Soc., Chem. Commun., 1148 (1990); [c] Q. Lu, J. M. Latour, C. J. Harding, N. Martin, D. J. Marrs, V. McKee and J. Nelson, J. Chem. Soc., Dalton Trans., 1471 (1994); [d] C. J. Harding, Q. Lu, J. F. Malone, D. J. Marrs, N. Martin, V. McKee and J. Nelson, J. Chem. Soc., Dalton Trans., 1739 (1995).
[19] C. Bazzicalupi, A. Bencini, V. Fusi, M. Micheloni, P. Paoletti and B. Valtancoli, J. Org. Chem., 59, 7508 (1994).
[20] M. W. Miller, R. W. Amidon and P. O. Tawney, J. Am. Chem. Soc. 77, 2845 (1955).
[21] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr. 32, 115 (1999).
[22] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen (1997).
[23] International Tables for X-ray Crystallography; Kynoch: Birgmingham, England, Vol. IV (1974).
[24] A. Bianchi, L. Bologni, P. Dapporto, M. Micheloni and P. Paoletti, Inorg. Chem., 23, 1201 (1984).
[25] G. Gran, Analyst (London), 77, 661 (1952).
[26] P. Gans, A. Sabatini and A. Vacca, Talanta, , 43, 1739 (1996).
[27] A. E. Martell, R. M. Smith and R. M. Motekaitis, Critical Stability Constants of Metal Complexes Database, Texes A\&M University: College Station, TX (1993).
[28] W. F. Ritten, A. Gulko and G. ScmuKler, Talanta, 17, 807 (1970).
[29a] C. Bazzicalupi, A. Bencini, V. Fusi, M. Micheloni and B. Valtancoli, J. Chem. Soc. Chem. Commun., 1119 (1994); [b] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P. Paoletti and B. Valtancoli J. Chem. Soc., Dalton Trans., 3535 (1997); [c] C. Bazzicalupi, A. Bencini, V. Fusi, C. Giorgi, P. Paoletti and B. Valtancoli, Inorg. Chem. 37, 94 (1998).
[30] N. W. Alcock, P. Moore, C. J. Reader and S. M. Roe, J. Chem. Soc., Dalton Trans., 2959 (1948).
[31] A. Bencini, M. I. Burguete, E. Garcia-España, S. V. Luis, J. F. Miravet and C. Soriano, J. Org. Chem., 58, 4749 (1993).
[32] ORTEP-3 C. K. Johnson, M. N. Burnet, Windows version 1.01 by L. Farrugia (1997).
[33] A. Bencini, A. Bianchi, E. Garcia-España, M. Micheloni and J. A. Ramirez, Coord. Chem. Rev., 118, 97 (1999).
[34] G. Golub, H. Cohen, P. Paoletti, A. Bencini and D. Meyerstein J. Chem. Soc., Dalton Trans., 2055 (1996).
[35] R. D. Hancock, S. M. Dobson, A. Evers, P. W. Wade, M. P. Negwenya, J. C. A.Boeyens and K. P. Wainwright, J. Am Chem. Soc., 110, 2788 (1988).
[36] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, E. Garcia-España, C. Giorgi, J. M. Llinares, J. A. Ramirez and B. Valtancoli, Inorg. Chem., 38, 620 (1999).
[37] C. Bazzicalupi, A. Bencini, H. Cohen, C. Giorgi, G. Golub, D. Meyerstein, N. Navon, P. Paoletti and B. Valtancoli, J. Chem. Soc. Dalton Trans, 1625 (1998).
[38] E. Garcia-España, J. Latorre, S. V. Luis, J. F. Miravet, P. E. Pozuelo, J. A. Ramirez and C. Soriano, Inorg. Chem., 35, 4591 (1996).

